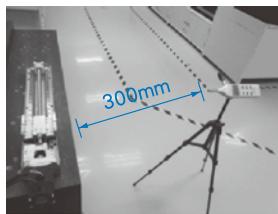
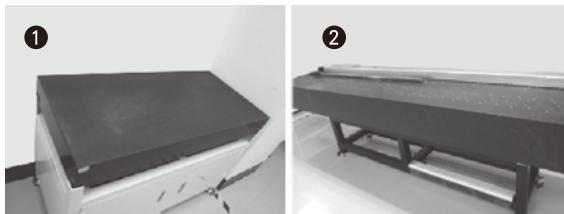
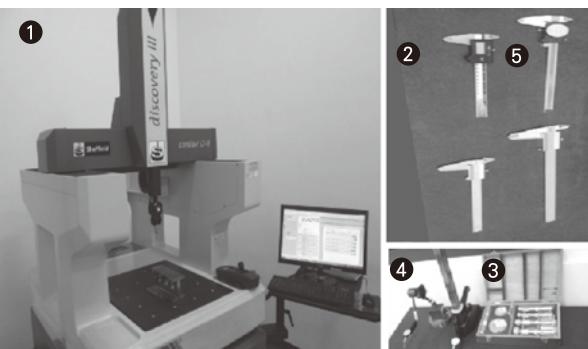


Measuring tools

SLIDER ELECTRIC CYLINDER - BALL SCREW DRIVE




Measuring tools

	<p>1. Parallelism testing / Height testing</p> <table><thead><tr><th>Measuring tools</th><th>Dial gauge and Dial indicator</th></tr></thead><tbody><tr><td>Measuring methods</td><td><ol style="list-style-type: none">1. Fix the actuator on granite.2. Fix the measuring tools on the actuator's slider.3. As photo display.4. Record it as a reference.</td></tr></tbody></table>	Measuring tools	Dial gauge and Dial indicator	Measuring methods	<ol style="list-style-type: none">1. Fix the actuator on granite.2. Fix the measuring tools on the actuator's slider.3. As photo display.4. Record it as a reference.
Measuring tools	Dial gauge and Dial indicator				
Measuring methods	<ol style="list-style-type: none">1. Fix the actuator on granite.2. Fix the measuring tools on the actuator's slider.3. As photo display.4. Record it as a reference.				
	<p>2. Absolute straightness accuracy testing</p> <table><thead><tr><th>Measuring tools</th><th>Laser interferometer detection</th></tr></thead><tbody><tr><td>Measuring methods</td><td><ol style="list-style-type: none">1. Fix the actuator on granite.2. Fix the measuring tools on the actuator's slider.3. As photo display.4. Print the test report as a recorder.</td></tr></tbody></table>	Measuring tools	Laser interferometer detection	Measuring methods	<ol style="list-style-type: none">1. Fix the actuator on granite.2. Fix the measuring tools on the actuator's slider.3. As photo display.4. Print the test report as a recorder.
Measuring tools	Laser interferometer detection				
Measuring methods	<ol style="list-style-type: none">1. Fix the actuator on granite.2. Fix the measuring tools on the actuator's slider.3. As photo display.4. Print the test report as a recorder.				
	<p>3. Absolute straightness accuracy testing</p> <table><thead><tr><th>Measuring tools</th><th>Laser position detection</th></tr></thead><tbody><tr><td>Measuring methods</td><td><ol style="list-style-type: none">1. Fix the actuator on granite.2. Use laser to align the slider's slide to the repeatability accuracy.3. As photo display.4. Record it as a reference.</td></tr></tbody></table>	Measuring tools	Laser position detection	Measuring methods	<ol style="list-style-type: none">1. Fix the actuator on granite.2. Use laser to align the slider's slide to the repeatability accuracy.3. As photo display.4. Record it as a reference.
Measuring tools	Laser position detection				
Measuring methods	<ol style="list-style-type: none">1. Fix the actuator on granite.2. Use laser to align the slider's slide to the repeatability accuracy.3. As photo display.4. Record it as a reference.				
	<p>4. Power drive situation testing by motor electric current</p> <table><thead><tr><th>Measuring tools</th><th>Mitsubishi servo driver 100W, 200W, 400W</th></tr></thead><tbody><tr><td>Measuring methods</td><td><ol style="list-style-type: none">1. Fix the actuator on granite.2. Fix the measuring tools on the actuator's slider.3. As photo display.4. Record it as a reference.</td></tr></tbody></table>	Measuring tools	Mitsubishi servo driver 100W, 200W, 400W	Measuring methods	<ol style="list-style-type: none">1. Fix the actuator on granite.2. Fix the measuring tools on the actuator's slider.3. As photo display.4. Record it as a reference.
Measuring tools	Mitsubishi servo driver 100W, 200W, 400W				
Measuring methods	<ol style="list-style-type: none">1. Fix the actuator on granite.2. Fix the measuring tools on the actuator's slider.3. As photo display.4. Record it as a reference.				
	<p>5. Smoothness testing</p> <table><thead><tr><th>Measuring tools</th><th>Pull tension gauge</th></tr></thead><tbody><tr><td>Measuring methods</td><td><ol style="list-style-type: none">1. Fix the actuator on granite.2. Push the slider using pull tension gauge.3. As photo display.4. Record it as a reference.</td></tr></tbody></table>	Measuring tools	Pull tension gauge	Measuring methods	<ol style="list-style-type: none">1. Fix the actuator on granite.2. Push the slider using pull tension gauge.3. As photo display.4. Record it as a reference.
Measuring tools	Pull tension gauge				
Measuring methods	<ol style="list-style-type: none">1. Fix the actuator on granite.2. Push the slider using pull tension gauge.3. As photo display.4. Record it as a reference.				

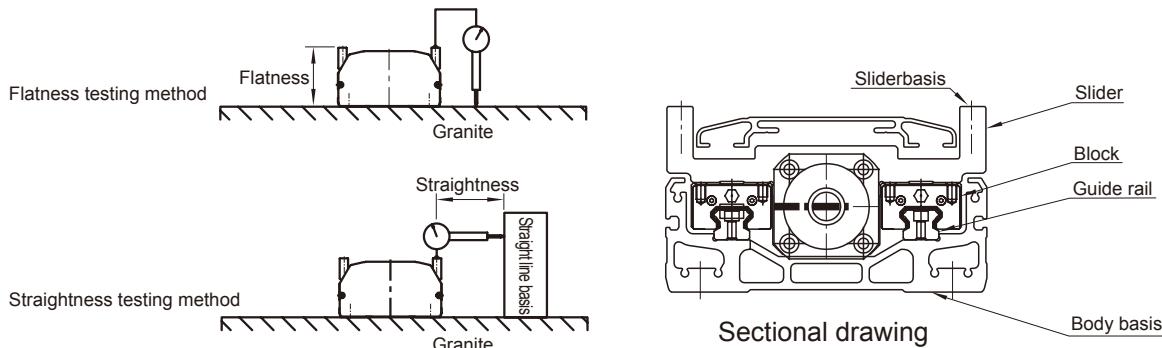
Measuring tools

SLIDER ELECTRIC CYLINDER - BALL SCREW DRIVE

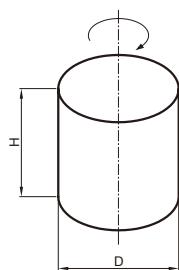
Measuring tools

	6.Belt tension testing	
	Measuring tools	Pull tension gauge
	Measuring methods	<ol style="list-style-type: none"> 1. Fix the actuator on granite. 2. Use belt tension gauge to test the vibration of the belt. 3. As photo display. 4. Record it on shipping testing.
	7.Decibel testing	
	Measuring tools	Decibel meter
	Measuring methods	<ol style="list-style-type: none"> 1. Fix the actuator on granite. 2. Decibel meter put at the distance of 300mm. 3. Use motor to drive actuator in high speed. 4. As photo display. 5. Record it on shipping testing report.
	8.Measuring tool- Granite platform	
	Granite specifications	<ol style="list-style-type: none"> 1. Size 1295mm*600mm*140mm 2. Size 4020mm*800mm*300mm
	9.Material tools	
	Measuring tools	<ol style="list-style-type: none"> 1. 3D Inspection testing machine. 2. Electronic vernier caliper, vernier caliper. 3. Inside micrometer, outside micrometer. 4. Altimeter, vertical meter. 5. Electronic level meter. 6. Dial gauge, Dial indicator. 7. Steel tape, Steel ruler.
	Measuring tools calibration standards	<p>Block gauge, ring gauge (regularly qualified) QC Room</p> <ol style="list-style-type: none"> 1. Control temperature and humidity to keep the stability of the measurement. 2. Measuring tools calibrate regularly.

Technical wording reference


SLIDER ELECTRIC CYLINDER - BALL SCREW DRIVE

Flatness and straightness standard

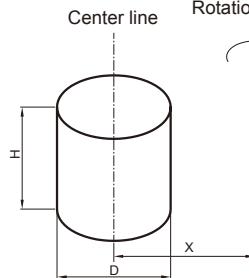

Flatness standard=The parallelism of body basis and slider basis is less then 0.05mm/M

Straightness standard=The parallelism of slider basis and straight line basis is less then 0.05mm/M

Equation of moment of inertia calculation

Usually the load is not simple form, and the calculation of the moment of inertia is not easy. As a method, load is replaced with several factors that resemble a simple form for which the moment of inertia can be calculated. The total of the moment of inertia for these factors is the obtained. The objects and equations often used for the calculation of the moment of inertia are shown below.

1. Moment of inertia for cylinder
The moment of inertia(J) for a cylinder having a rotation center such as shown below is given by


$$J = \frac{P\pi D^4 h}{32 \times 980} = \frac{WD^2}{8g} \text{ (kgf.cm.sec}^2\text{)} \\ = \frac{mD^2}{8} \text{ (Kgm}^2\text{)}$$

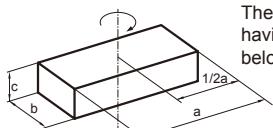
P = Density (kg/cm³)

g = Gravitational acceleration (cm/sec²)

W = Weight of cylinder (kgf)

m = Mass of cylinder (kg)

3. When the object's center line is offset from the rotation center
The moment of inertia(J) for a cylinder having a rotation center such as shown below is given by


$$J = \frac{P\pi D^4 h}{32} + \frac{P\pi D^4 h}{4} = \frac{WD^2}{8g} + \frac{WX^2}{G} \text{ (kgf.cm.sec}^2\text{)} \\ = \frac{mD^2}{8} + mX^2 \text{ (Kgm}^2\text{)}$$

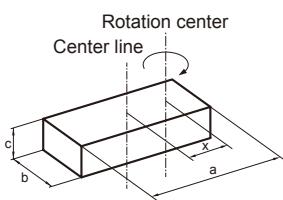
P = Density (kg/cm³)

g = Gravitational acceleration (cm/sec²)

W = Weight of cylinder (kgf)

m = Mass of cylinder (kg)

2. Moment of inertia for rectangular parallelepiped
The moment of inertia(J) for a cylinder having a rotation center such as shown below is given by


$$J = \frac{Pabc(a^2+b^2)}{12} = \frac{W(a^2+b^2)}{12g} \text{ (kgf.cm.sec}^2\text{)} \\ = \frac{M(a^2+b^2)}{12} \text{ (Kgm}^2\text{)}$$

P = Density (kg/cm³)

g = Gravitational acceleration (cm/sec²)

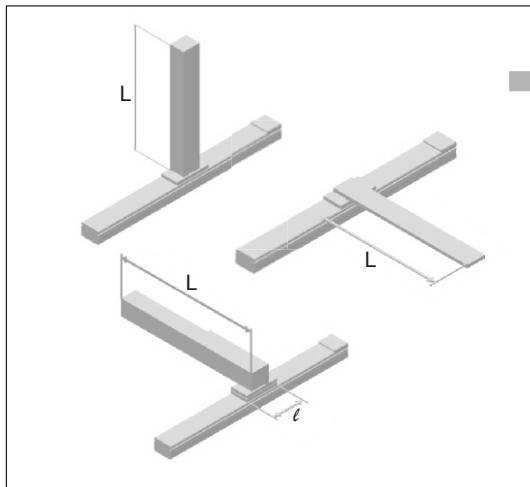
W = Weight of cylinder (kgf)

m = Mass of cylinder (kg)

$$J = \frac{Pabc(a^2+b^2)}{12} + \frac{PabcX^2}{G} \\ = \frac{W(a^2+b^2)}{12g} + \frac{WX^2}{G} \text{ (kgf.cm.sec}^2\text{)} \\ = \frac{M(a^2+b^2)}{12} + mX^2 \text{ (Kgm}^2\text{)}$$

W = Weight of prism (kgf)

m = Mass of prism (kg)


Technical wording reference

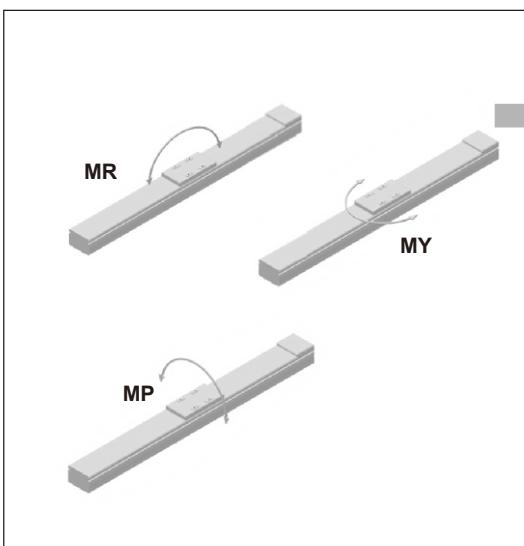
SLIDER ELECTRIC CYLINDER - BALL SCREW DRIVE

Overhang load length

An overhang load length is specified for a slider-type actuator to indicate the length of overhang (offset) from the actuator. When the length of an object mounted to the slider actuator exceeds this length, it will generate vibration and increase the setting time. So, pay attention to the allowable overhang length as well as the allowable dynamic moment.

The allowable overhang load length is determined by the slider length.

An overhang that exceeds the allowable overhang length will generate vibration and increase settling time.


$L/l = 5$ Within
* Between 3 to 4 for a camera equipped measuring machine.

- For example

$L/l = 1.2$	Mechanical machine
$L/l = 3$	Mechanical machine
$L/l = 5$	Robot

Allowable dynamic moment

The allowable dynamic moment is the maximum offset load exerted on the slider, calculated from the guide life. The direction in which force is exerted on the guide is categorized into 3 directions-MP(pitch), MY(yaw), MR(roll)-the tolerance for each of which are set for each actuator. Applying a moment exceeding the allowable value will reduce the service life of the actuator. Use an auxiliary guide when working within or in excess of these tolerances.


The allowable dynamic moment is calculated from the service life of the guide.

Over the moment would reduce the life of actuator.

*Moment is based on the following basis

$$M(N.m) = W(kg) \times L(m) \times 9.8$$

$W(kg)$ =Load
 $L(m)$ =Distance from work point to the center of gravity of payload.

Ball screw information

SLIDER ELECTRIC CYLINDER - BALL SCREW DRIVE

Lead accuracy

PMI's precision ground ball screws are controlled in accordance with JIS B 1192. The permissible values and each part of definitions are shown below.

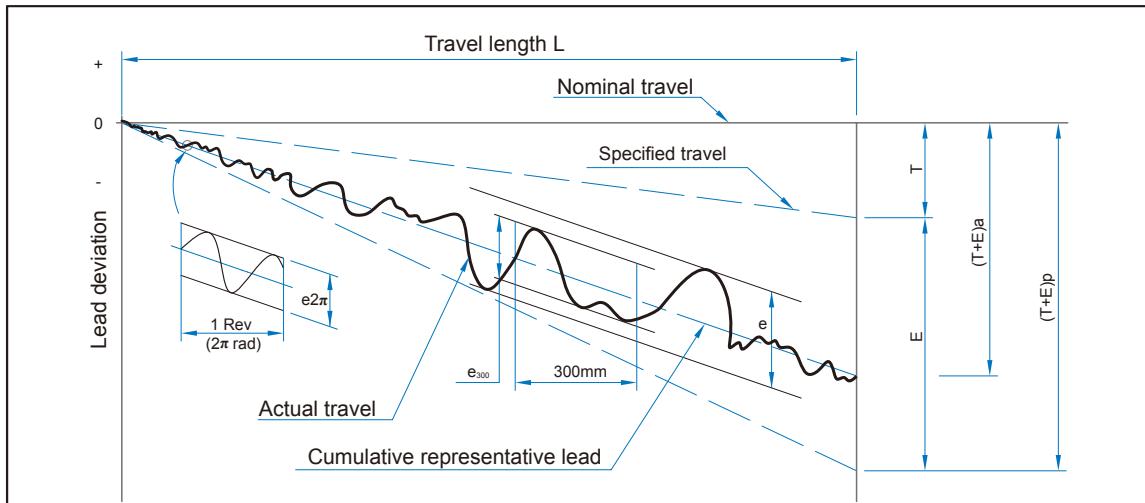


Fig.1 Technical terms concerning the lead

■ Table 1 Terms

T+E	Cumulative representative lead	Cumulative representative lead. A straight line representing the tendency of the cumulative actual lead. This is obtained by least square method and measured by laser system.
P		Permissible value.
a		Actual value.
T	Specified travel specify the target value	Specified travel. This value is determined by customer and maker as it depends on different application requirements.
E	Cumulative representative lead error	Accumulated reference lead deviation. This is allowable deviation of specified travel. It is decided by both of the accuracy grade and effective thread length.
e	Change	Total relative lead variation maximum width of variation over the travel length.
e₃₀₀		Lead deviation in random 300 mm.
e_{2π}		Lead deviation in random 1 revolution 2π rad.

Ball screw information

SLIDER ELECTRIC CYLINDER - BALL SCREW DRIVE

■ Table 2 Accumulated reference lead deviation ($\pm E$) and total relative variation (e)

Grade	C0		C1		C2		C3		C4		C5		C6		C7		C8	
Over up to	E	e	E	e	E	e	E	e	E	e	E	e	± 0.025	± 0.050	± 0.120			
315	4	3.5	6	5	5	7	12	8	12	12	23	18						
315 400	5	3.5	7	5	7	7	13	10	14	12	25	20						
400 500	6	4	8	5	8	7	15	10	16	12	27	20						
500 630	6	4	9	6	9	7	16	12	18	14	30	23						
630 800	7	5	10	7	10	7	18	13	20	14	35	25						
800 1000	8	6	11	8	11	8	21	15	22	16	40	27						
1000 1250	9	6	13	9	13	9	24	16	25	18	46	30						
1250 1600	11	7	15	10	15	10	29	18	29	20	54	35						
1600 2000			18	11	18	11	35	21	35	22	65	40						
2000 2500			22	12	21	13	41	24	41	25	77	46						
2500 3150			26	15	25	15	50	29	50	29	93	54						
3150 4000			32	18	30	18	62	35	62	35	115	65						
4000 5000					36	21	76	41	76	41	140	77						
5000 6300							85	50	85	50	170	96						
6300 8000							106	62	106	62	213	115						
8000									132	75	265	140						

■ Table 3 Accuracy grade

Variation in random 300mm (e_{300}) and wobble ($e_{2\pi}$)

α_{522}

Grade	C0	C1	C2	C3	C4	C5	C6	C7	C10
JIS	3.5	5		8		18		50	210
PMI	3.5	5	7	8	12	18	25	50	210

$\alpha_{4\pi}$

Grade	C0	C1	C2	C3	C4	C5
JIS	3	4		6		8
PMI	3	4	4	6	8	8