M

mindman

CMZ20 series

Instruction Manual

Closed-loop stepping motor driver

Version 202303

10

11

12

13

14

15

16

17

18

19

Contents

Specifications

Preparations

Connector Pin Assignments

Input schematic diagram

Output schematic diagram

Timing chart

Indicator lights

Dimension (Unit: mm)

Parameters
MODBUS Transaction
Data Encoding
Public Function Code Definition
MODBUS master node protocol principle
MODBUS addressing rules
Master / Slave communication time diagram
RTU transmission mode
CRC checking

Two-Wire MODBUS Definition

Appendix. Wiring Diagram Example of MITSUBISHI FX3U Series

10

11

11

12

13

26

28

28

36

36

37

37

39

42

43

1 Specifications

Item Description Notes
Model Number CM20
Input Power Voltage | DC24V-48V
Max. Output Current | 4.5A (peak)

Motor

2-phase bipolar stepper motor
with encoder

Driver Method

PWM constant current driving

Interface

Input

+ PUL/DIR (Also available as
digital input)

- 5 digital inputs

« Encoder input (A, B, Z)
Output

+ 4 digital outputs

- Encoder output
(Differential A, B, Z)

Free assignment for every
input/output via communication
except Encoder output

Detail of Digital Inputs

/SV ON (Motor Enabled)
/RESET (Alarm reset)
/ISTART (Motor start/stop)
1JOG (Motor Jogging)
/HOME (Homing)

Detail of Digital
Outputs

/IN POTISION
IALARM

LED Indicators

Status, Alarm

2 indicator lights

Communication I/F

RS485 with maximum 32 axis
available

Modbus RTU protocol
Default Baud: 19200bps (Adjustable
by parameter)

Control Mode

Position Control

Positioning with pulse command or via
RS485

Dimension (mm)

W86.6 x D145.9 x H28.4

Connectors excluded

Weight About 350g Connectors excluded
@) ti

perating . 0-45°C, less than 85%RH No condensation
temperature/humidity

St

orage - 0-85°C, less than 85%RH No condensation
temperature/humidity
Atmosphere Avoid the corrosive gases

Specifications of the Motor

Model o020 025 028 | o35 042 056
Series - BM
Drive Method - Bi-Polar
Number of Phases - 2
Current per Phase A 0.6 1 1 15 2 3
Holding Torque N.m 0.036 0.085 0.085 0.28 0.51 1.53
Rotor Inertia g-cmh 2.9 8 8 40 75 490
Weights g 70 120 120 300 400 1150
Insulation Resistance Mohm 100 MIN.(at 500VAC)
Insulation Class - Class B (130°C)
Operating oC 0~50
Temperature

Incremental
Encoder Optical 6,400 PPR | 9,600 PPR | 9,600 PPR | 12,800 PPR | 16,000 PPR | 16,000 PPR
Encoder

2 Preparations

Please complete below items before power up the driver.
2.1 Connections
Please wire securely while see the connector pin assignment table below.
A. CNI: Connect a power supply to a motor
Please connect a power supply to the motor properly. Especially note that the driver
might be damaged if the user connects output terminals of the motor to the power supply.
Please use the wire which is 20 AWG at least.
CN2: To an encoder
CN3: To an interface signal
Please distribute necessary digital input/output signals. These common inputs/outputs are

aw

opto-isolated (except Differential Encoder Output signal).

Please prepare the isolated power input (+24V) additionally.
D. CN4: R5485 wiring

Please build the connection with the R]J45 connectors.

3 Connector Pin Assignments

3.1 CNI1 (Power & Motor)

Pin. | Signal name
6 | Motor B-
5 | Motor B+
4 | Motor A-
3 | Motor A+
2 | Power GND
1 | Power V+ (DC24V or48V)

Note: Please carefully observe voltage and polarities. Do NOT connect the power backwards.
Applicable wire size: AWG20~-AWG16 (stranded wire)

Please use a bladed type screwdriver (0.4*2.5mm size) for tightening the screws on the terminal block.

(e.g. SZS 0.4*2.5 VDE — 1205037 made by Phoenix Contact)
Tightening torque: 0.22-0.25N-m (2.3kgf-cm~2.5kgf-cm)

Applicable

Screwdriver

160

O,ﬁ’l_i_; 2,5 |

Wiring:
A. Insulation stripping length: 6-7mm

&
<

.& No advanced soldering (It may cause a
= connection error)

B. Insert the wires into the terminal block, and then tighten the screws.
Applicable tightening torque: 0.22-0.25N.m (2.3kgf-cm~2.5kgf-cm)

Notes

N

Please strip the wire carefully to avoid nicking, cutting, or damaging the strands.

While inserting the wires into the terminal block, please do not twist the stripped wires. Also,
the wires which are stripped too long may cause a short circuit because it allows an extra bare
area after they’'ve been inserted into the terminal block.

Please direct insert the wires into the terminal block without soldering to avoid the
disconnection due to the vibration.

Please do not increase extra stress on the wires.

Please turn the screwdriver clockwise when fasten down the screw of the terminal block to

avoid a loose contact.

O X

Turning clockwise Turning

counterclockwise

3.2 CN2 (Encoder IN)

Pin. | Signal Name Pin. | Signal Name
1 |A+ 2 | A-
3 | B+ 4 | B-
5 |Z+ 6 | Z-
7 |+5V 8 | 0V
9 |NC 10 | FG

Front view of encoder connector
Note: please carefully observe voltage and polarities. Do NOT connect the power backwards.

Z+ B+

+5V

A+

NC

FG

ov J |_T I—|

Applicable wire size: AWG28-AWG18 (Stranded wire)
Easy and convenient insertion thanks to push-in connection

Please use a bladed type screwdriver (0.4*2.5mm size) as a tool. (e.g. SZS 0.4*2.5 VDE — 1205037
made by Phoenix Contact)

Applicable

Screwdriver

Wiring;
A. Insulation stripping length: 7-8mm

7~8mm

No advanced soldering (It may cause a connection

-
<

error)

Convenient insertion, thanks to direct Push-in connection technology.

B. Use the screwdriver to open the contacts.

Move the screwdriver toward down * Move the screwdriver toward down *
and right = to open the contact. and left <= to open the conract.

| Contact | | Contact |

C. Insert the stripped end of each wire fully into its intended terminal. Ensure that no bare
wire strands extends from the terminal. And then remove the screwdriver.

Terminal area Terminal area

Notes
Please strip the wire carefully to avoid nicking, cutting, or damaging the strands.
While inserting the wires into the terminal block, please do not twist the stripped wires. Also,
the wires which are stripped too long may cause a short circuit because it allows an extra bare
area after they’ve been inserted into the terminal block.
Please direct insert the wires into the terminal block without soldering to avoid the
disconnection due to the vibration.
Please do not increase extra stress on the wires.
Please use the proper screwdriver to open the contacts of the terminal block to avoid

damaging its spring.

3.3 CN3(I/O)

No Color Name No Color Name No Color Name
1 Brown/Black +COM (24V) 10 White/Red OUTPUT 1 19 Blue Encoder A-
2 Red/Black NC 11 L. Blue/Black OUTPUT 2 20 Purple Encoder B+
3 Orange/Black NC 12 L. Green/Black OUTPUT 3 21 Gray Encoder B-
4 Yellow/Black NC 13 Pink OUTPUT 4 22 White Encoder Z+
5 Green/Black INPUT 1 14 Brown CW+ / Pulse+ 23 Black Encoder Z-
6 Blue/Black INPUT 2 15 Red CW- / Pulse- 24 L. Blue FG
7 Purple/Black INPUT 3 16 Orange CCW+ / Dir+ 25 L. Green -COM (0V)
8 Gray/Black INPUT 4 17 Yellow CCW- / Dir-
9 White/Black INPUT 5 18 Green Encoder A+

Front view of the I/O female connector.

IN1-5+
OUT1-4+ +COM.

/I

|

CCW-o

3.4 CN4 (IN) / CN5 (OUT) (RS485)

Pin. | Signal name Pin. | Signal name
1 | NC 2 | GND
3 | Alnput (RS485) 4 | NC
5 | NC 6 | B Input (RS485)
7 | For terminal resistor (CN53) | 8 | For terminal resistor (CN5)

RJ45 type x 2

Front view of the socket

Important Note:

In the case of connecting several drivers, please
enable the terminal resistor in the last device by
making a short circuit between its Pin3 & Pin8,
and Pin6 & Pin7 of CN5.

Ps. Terminal resistor cannot be wired with CN4.

4 Input schematic diagram

A. Pulse command input circuit (Differential / Line driver)

AM26LS31 or equivalent 14 1 6+,j\ P+ s ——— :
hd | i

. \[7 » :

Y | S | T '

| 75mASIF<15mA TP 104

B. Pulse command input circuit (Open collector)

)
O —

1416 A ps L peeeeeeeeeen

+SV-+24V > n® : 3
; {7 > :

1517) p- < 270€ %EZ*[X

—J !

- RS

| 75mASIfF<15mA TLP104

OV B o e o o e et b w0 e w0 T s w0 w— o w— w— w— =
Note: CM-20 is compatible both with +5V 8 +24V signal, therefore, the user doesn’t need to

connect a resistor in series additionally.

C. Sensor, digital input circuit (Contacts)

Il
+24V O
: 15kQ| | VT
N ' 6.8kQ o
=9
ovV>—0 O O——1{1

TLP291

! 2mASIF=6mA

D. Sensor, digital input circuit (Open collector)

-
+24V > O

: 1.5k Q| | |

 If 6.8kQ

S9N —
\|/ S|
| 2mASIF<6mA
oV

5 Output schematic diagram

A. Digital output circuit (Relay)

+24V
N e
i
: I
10S 115512 Brl\ C, S am——
he i e
: VceTi Bls af
25, 2 1 ‘
oV 'Q COM L & :

B. Digital output circuit (Photo-coupled)
VCC

10

Important note: Connecting a diode
(1N4007 or equivalent) on both
side of the relay additionally is
required when the user is connecting

a relay.

— hd ! i |

52 : VceTi -

oV pu i L E
|
I
|

C. Encoder output circuit (Differential/ Line driver)

AM26LS32 or equivalent
18, 20, 22 !

1
1
1
19, 21, 23 '
: AMZ26LS31 or equivalent

Important note: Since Encoder output is NOT opto-coupled, please make sure that the wiring is correct
before power-up the driver. Also make sure that there is no short circuit connected with +24V power of
CN3 to avoid damaging the master device and the driver.

6 Timing chart

The input waveform and timing chart (One-clock input or Pul/Dir input)
AYA [\
STEP Input S I B>
<0.1uS { <0.1uS 210uS<—>§ <_> >0.9uS
DIR Input
<> =10us
<o.mus> € <0.1u® €
(L level - Fc;rward rotation; H level - Reverse rotation) A
The input waveform and timing chart (Two-clock input or CW/CCW input)
S >0.9uS
STEP Input J = /
(Forward) <0.1us d0.1us >10us 410uS
DIR Input e T \
(Reverse) /
<—) 20.9uS

7 Indicator lights
A. Status
To indicate the status of the driver, the indicator may flick (Low level for 0.5 second & High
level for 0.5 second). A flickering sequence is ended by high level for 2 seconds and repeats.

Status Green Indicator Communication Description
Code
Stopped Flickering 2 The motor is enabled but not rotating.
Working | Steady light 3 The driver is working
Disabled Flickering 1 The motor is disabled and in a free state.

11

3

Alarm

To indicate the status of the driver, the indicator may flick (Low level for 0.5 second & High
level for 0.5 second). A flickerin

g sequence is ended by high level for 2 seconds and repeats.

° <
000000000000

C icati
Alarm type | Red Indicator ommunication Description
Code
Over current | Flashing once 10 Over current/the drvier was out of order
Disconnected . _ 11 Motor has been disconnected from the
Flashing twice .
motor driver.
Over voltage |Flashing 3 times 14 Input voltage is over 60V.
Low voltage |Flashing 4 times 13 Input voltage is under 18V.
25: The position error is larger than
tolerance set by the user.

Position error |Flashing 5 times 25 0r 26 26: Overload, 150% motor current had
been output continuously for more than 2
second.

TBD TBD TBD
Dimension (Unit: mm)
1453
358
I fﬁ_l_{'
=D | =
4 ||pT i
L | e |
_') v Alarm]
indicator
3 e S T Ty e 4 J ‘
e JJ
cl A
- (N3 -

284

12

Name of parts

Symbol | Usage
CNl1 Power supply / motor connector
CN2 Encoder connector
CN3 Interface connector
CN4 RS485 connector (IN)
CN5 RS485 connector (OUT)
CN6 Reserved

9 Parameters

9.1 Basic status of the controller (Sort 1)

adr | word | Parameter Description Range/Unit
0100 1 Motor current Current value of motor current 0.1%/A
0101 1 | Input voltage Current input voltage 19%/V
0104 2 | Micro-step subdivisions | To set micro-step subdivisions Ppr
0106 1 Pulse method 1:1-clock input, 2: 2-clock input 1-2
To indicate which kind of alarm is
0108 1 Alarm code triggered. Please refer to 1-2 for derails. | -
“0” means no error/alarm occurred.
0109] Status DI‘IV‘GI‘ status. Please refer to 1-1 for]
detalls
0110 1 Hardware version To display hardware version of the driver| -
0111 1 Software version To display software version of the driver | -
0117 2 Position Target position pulse
0119 1 | Actual speed - 0.01rps
0126 1 | Actual position Current position during operation pulse
0174 1 SPECIFY execlutmg.)]
program section via I/O
0176 1 Program error No. - -
0178 1 Program No.

13

9.2 Basic parameters (Sort 02)
adr | word | Parameter Description Range/Unit
To determine motor rotating direction
and encoder direction:
If Bitl = 0, encoder direction is the
same; if Bitl = 1, encoder direction
0201 I Motor direction changes.) L 0-1
If Bit0 = 0, rotating direction is the
same; if Bit0 = 1, rotating direction
changes.
Configured setting will be available after
a power cycle.
To specify the activated edge of pulse
signal
0202 1 Activated edge of pulse | O: Ffflll'ing edge 05
signal 1: Rising edge
Configured setting will be available after
a power cycle.
Target current for To spef:ify the current e-lpplieq when the
0213 | . . motor is stopped. (Available in Open- 10%-120%
automatic reduction
loop mode)
0: Open-loop control
0217 | Motor control 1: Closed-loop control 0-1
(Default =1)
. . The smaller value, the smoother motor
0224 1 Micro-step emulation motion. Side effect: A delay/lag 1-700
0234 1 Digital Filter F?Iter coefficient of inpu'_[pulse. The |15
bigger value means less input frequency.
0241 I Input current To set the current (I)?nggg
0242 5 Micro-Step subdivision To spec_ify the pulses per motor 200-102400
revolution Ppr
. 1: PUL & DIR (1 clock input)
0244 1 Pulse input method 2: CW & CCW (Double clock input) -2
To specify the delay time after the motor
Time of current is stopped and then the current 1-32767
0245 1 i . . .
reduction reduction starts.(Available in Open-loop| US
mode)
0: External pulse (Default)
0296 | Control method L: Internal pulse 0-1

(A power cycle is required after
modifying this parameter)

14

0298

Communication address

Default value is 1

1-255

0299

Baud for serial

communication

Default value is 19200

1600-115200

9.3 Closed loop control related parameters (Sort 04)

adr | word | Parameter Description Range/Unit
0246 1 Encoder resolution Resolution = Encoder counts x 4 200-65535
Width of in-position The mjposmon mgnal outputs V?'}.len the | 1-1000
0247 2 ulse motor is approaching target position Encoder
b (Default value=0) resolution
0251 1 VCIOCifY IOOP KP Velocity loop Kp 0~30000
0252 1 Velocity loop Ki Velocity loop Ki 0~30000
0255 1 Position loop Kp Position loop Kp 0-30000
. 0-~30000
Threshold f - :
0258 1 r‘e‘s oldtorin The unit is based on encoder resolution | Encoder
position lugi
resolution
9.4 Control parameters (Sort 05)
adr | word | Parameter Description Range/Unit
0301 1 | Starting speed Defaulc value: 100 1-2000
0.01-20rps
0302 1 Stopping speed Default value: 100 1-2000
0.01-20rps
0303 1 Acceleration Default value: 100 5*_120000
rPS
0304 1 Deceleration Default value: 100 5“10000
rPS
To specify the method when executing
homing.
0: CW homing (Default)
1: CCW homing
H i 0~10
0305 1 oming mode 5 Plus Limic
3: Minus Limit
8: Plus direction to Z phase
9: Minus direction to 7. phase
0306 1 Constant moving speed | Default value: 1000 1-5000
0.01-50rps
_ _ In speed mode, the motion direction
0307 1 Moving speed in speed | o414 be the same with the direction of | 5000-5000
control mode soced -50-501ps
pCC .
Default value: 1000
0308 1| JOG speed Default value: 1000 1-5000
0.01-50rps
. 1-5000
0309 1 Homing speed Default value: 1000 0.01-50rps

15

Moving speed after

Moving speed after reached Home

I -5000

0310 reached Home Default value:1000 0.01-50rps
2000000000+
0311 :]);:rs](iar':;mount of Default value: 0 2000000000
pulse
Operation method
In absolute positioning mode: Move to 2000000000
0313 Output pulse specified target position | 2000000000
In relative positioning mode: Move with pulse
a specified amount
Default value: 0
-2000000000+
0317 Plus software limit Default value: 2000000000 2000000000
Note: N/A during Homing sequence pulse
-2000000000+
0319 Minus software limit | Derault value: -2000000000 2000000000
Note: N/A during Homing sequence
pulse
-2000000000+
0321 Set current position Default value: 0 2000000000
pulse
0: Null (Default)
1: Perform an absolute move toward to
specified position. The moving direction
is defined by specifying + or — for
moving amount, not by specifying + or —
for moving speed. The target position
can be changed even when the motor is
in motion.
2: Perform a relative move with a
specified distance. The moving direction
is defined by specifying + or — for
moving amount, not by specifying + or —
0323 Control commands for moving speed. It’s NOT available for 0-29

changing moving amount when the
motor is in motion.

3: Speed mode

4: +Jog

5:-Jog

6: Deceleration Stop

7: Emergency Stop

8: Set current position. Setting is only
available when the motor is stopped.
12: Homing

13: Reset alarm

14: Check the programming data
15: Save the programming data

16

16: Start the programming data
17: Pause the programming data
18: End the programming data

0324

Internal control switch

Byte | Bitl| BitO

Function | -limit | +limit

1: Enable
0: Disable (Default setting)

Configured setting will be available after
a power cycle.

0-1

9.5 Input assignments (Sort 06)

adr

word

Parameter

Description

Range/Unit

0400

IN1 assignment

0: Null (Default)

1: Perform an absolute move toward to
specified position. The moving direction
is defined by specifying + or — for moving
amount, not by specifying + or — for
moving speed. The target position can be
changed even when the motor isin
motion.

2: Perform a relative move with a specified
distance. The moving direction is defined
by specifying + or — for moving amount,
not by specifying + or — for moving speed.
It’s NOT available for changing moving
amount when the motor is in motion.

3: Speed mode

5:-JOE

6: Deceleration Stop

7: Emergency Stop

8: Set current position. Setting is only
available when the motor is stopped.
9: +Limit

10: -Limit

11: Home signal

12: Perform Homing

13: Reset alarm

14: Check the programming data
15: Save the programming data

16: Start the programming data

0-30

17

17: Pause the programming data

18: End the programming data

20: Enable (Servo ON)

25: Assign Bit 0 to 1/O ports for selecting
programming data

26: Assign Bit 1 to 1/O ports for selecting
programming data

27: Assign Bit 2 to 1/O ports for selecting
programming data

28: Assign Bit 3 to 1/O ports for selecting
programming data

29: Assign Bit 4 to 1/0 ports for selecting
programming data

Please refer to “Description” column of

0401 N2 assignment 0400 for details. (Default: 0) 0-30
. Please refer to “Description” column of
0402 IN3 assignment 0400 for details. (Default: 0)) 0-30
. Please refer to “Description” column Of
0403 N4 assignment 0400 for details. (Default: 0) 0-30
. Please refer to “Description” column of
0404 INS assignment 0400 for details. (Default: 0) 0-30
. Please refer to “Description” column of
0405 NG assignment (CCW 0400 for details. (Default: 0) 0-30
port) (Unavailable in external pulse mode)
. Please refer to “Description” column of
0406 IN7 assignment (CW | 006 for details. (Default: 0) 0-30
port (Unavailable in external pulse mode)
0: OFF (Default)
0410 Pseudo port IN1 1: ON (Trigger the action specified from | 0-1
the list of 0400)
0: OFF (Default)
0411 Pseudo port IN2 1: ON (Trigger the action specified from | 0-1
the list of 0400)
0: OFF (Default)
0412 Pseudo port IN3 1: ON (Trigger the action specified from | 0-1
the list of 0400)
0: OFF (Default)
0413 Pseudo port IN4 1: ON (Trigger the action specified from | 0-1
the list of 0400)
0: OFF (Default)
0414 Pseudo port INS 1: ON (Trigger the action specified from | 0-1

the list of 0400)

18

0: OFF (Default)
1: ON (Trigger the action specified from

0415 | Pseudo port IN6 . -
P the list of 0400) 0-1
(Unavailable in external pulse mode)
0: OFF (Default)
1: ON (Trigger the action specified from
0416 | Pseudo port IN7 i 0-1
P the list of 0400)
(Unavailable in external pulse mode)
9.6 Output assignments (Sort 07)
adr | word | Parameter Description Range/Unit
100: Common port
101: Alarm output:
The signal is output when there’s no,
alarm. It won’t be output when an
. I Defaul
0420 1 OUT1 assignment alarm (_)(_:curr.ed (Default) 100-104
102: In-position signal
103: Servo ON/OFF state signal:
The signal is output in a Servo OFF
state and it won’t be output when
the motor is enabled.
. Please refer to “Description” column Of
0421 1 OUT2 assignment . 100-104
g 0420 for details. (Default:100)
. Please refer to “Description” column Of
0422 1 OUT3 assignment . 100-104
g 0420 for details. (Default:100)
0423 | OUT4 assignment Please refer t_o Description” column of| 149.104.
0420 for details. (Default:100)
Output function (Default:100)
0428 | Common digital output | Byte Bit3 Bit2 Bit1 Bit0
control Output | OUT4 | OUT3 | OUT2 | OUT1
Logic for output ports
0430 1 Logic of digital outputs | Byte Bit3 Bit2 Bit1 Bit0
Output | OUT4 | OUT3 | OUT2 | OUT1
9.7 Programming position mode (Sort 08)

Address range for programming control: 1024- 1536. Up to 256 points of data is available.

Format of programming control commands

Cmdcode| word | Parameter Description Range/Unit
Parameter 1: Target position ~2147483647~
1 2 Absolute move 2147483647
Default value: 0 oulse

19

5 Relative move Parameter 1: Moving distance/amount -2211447744883366447%
Default value: 0 pulse
Move with constant Parameter 1: Moving speed -5000-5000
5 speed Default value: 0 -50-50rps
6 Decelerated stop - -
. _ Parameter 1: Set position '22%%%%%%%%%
3 Position setting Default value: 0 e
Parameter 1: Homing method
) Default value: 0 0-10
12 Homing Please refer to the content stated in 0305
for details
1-2000
51 Start speed Default value: 100 0.01-20rps
1-2000
53 Stgpping Speed Default Value: 100 0.01 ~2()EPS
1~-5000
54 Position setting speed Default value: 1000 0.01-50rps
~ 10000
61 Acceleration Default value: 100 fpsl
~ 100}
62 Deceleration Default value: 100 qug
Par 3 (high 8 bits) — Par 2 (low 8 bits) / | -
Par 1 (low 16 bits)
Par 1: Awaiting until the next command
started to be executed. If the setting
value is 0, then the device will keep
awaiting until an I/O signal enabled
Par 2: The target of jumping once the
65 Awaiting the jump
Bit7 | Bit6 | BiS | Bitd
Matching Specify the input port for
starus matching (1-7)
Bit3 Biz | Bil | Bitd
Matching Specify the input port for
status matching (1-7)
Par 1 (high 16 bits) / Par 2 (low 16 bits) | -
66 Jump to Par 1: Loop counts
Par 2: Jump target address
68 Common output ports | Par 1: Status of the output port -
100 End the programming | Adding the end code at the end of every | -
control section

Users set several steps in Programming position mode for programming positioning control which

would be executed in order automatically by triggering a defined external I/O. The users can specify

such as moving distance or acceleration/deceleration for every step and store these steps in EEPROM.

20

And then they only need to trigger the I/O to start these programming motions.

Speed (r/min)

Positioning 1 Positioning 2~ «seees Pasitioning n

N,

Programming positioning mode

Port configurations for every step of programming data

Bit4 | Bit3 | Bic2 | Bicl | BitO Step
0 0 0 0 0 1
0 0 0 0 2
0 0 0 1 0 3
0 0 0 1 1 4
1 1 1 0 1 30
1 1 1 1 0 31
1 1 1 1 1 32

Programming-related assignments to 1[/O Ports
1. 25-29 can be used for determining a certain programming step: By assigning Bit 0 — Bit 4
to 1/O ports.
By assigning 15 to input ports: for starting the programming control.

2. Choose the required programming functions for I/O ports.

Example:
Assign 25 (Bit 0) for IN1 port
Assign 26 (Bit 1) for IN3 port

Assignments for IN1-7 are available based on user’s needs.

IN3 | INI
Bicl | Bit0 Step
0 0 1
0 1 2
1 0 3
1 1 4

Note: “1” in the graph above means “Activated signal”

ThC Signal O{: PI‘OgI‘HI’I’lmiI‘lg assignments ShOU,ld be completed {:Ol'

at least 20msec before the Start signal.

21

Examples: Writing / Checking / Saving
Note: All message elements are hexadecimal.

Example 1. Set/Write a programming parameter

Command 1, current step#0: Set Constant moving speed as 1000, i.e. 10rps
01 10 0400 0002 04 0036 03e8 21DF
O @ 6 @ 6 6 @ ®

(O Address 0x1

@ Writing MODBUS command “0x10”

® Communication address 0x400 (=1024 in decimal)

@ 2 data

® 4 bytes

® Dara 1: Specify “Constant moving speed” command (0x0036 = 54 in decimal)
@ Darta 2: Specify value 0x03E8 for Constant moving speed (=1000 in decimal)
CRC check

Command 2, current step#1: Set a relative positioning with 10000 pulses

01 10 0402 0003 06 0002 27100000 20CB
o @ @ ® ® @
(O Address 0x1

@ Writing MODBUS command “0x10”

® Communication address 0x402 (=1026 in decimal)

@ 3 dara

® 6 bytes

® Data 1: Set Relative positioning command as 0x0002 (=2 in decimal)
@ Data 2: Specify value 0x2710 to move with pulses (=10000 in decimal)
CRC check

Command 3, current step#2: Waiting for 1000ms
01 10 0405 0003 06 00 41 03 E8 0003 1F DE

O @ © @ 6 ® @

O Address 0x1

@ Writing MODBUS command “0x10”

® Communication address 0x405 (=1029 in decimal)

@ 3 data

® 6 bytes

©® Dara 1: Specify value 0x0041 for Relative positioning command (=65 in decimal)

@ Data 2: Convert data from “03 E8 00 03” to “00 03 03 E8”
A B C

*Note: Little-Endian byte order is applied for 4-bytes data.

22

A: System default value is 0. Please do not change the setting.

B: Waiting for jumping to #3, current command step is #2

C: Specify a value 0x03E8 for Waiting time (=1000ms in decimal)
CRC check

Command 4, current step#3: Perform a Relative moving repeatedly for 10 times.
01 10 0408 0003 06 0042 0001000A DB92

o © ®© @ 6 ©® @ ®
(D Node address 0x1

2 MODBUS command “0x10”

(3) Communication Address 0x408 (=1032 in decimal)

@ 3 data

®) 6 bytes

(© Data 1: Specify a value 0x0042 for Relative positioning command (= 66 in decimal)
(D Data 2: Convert data from 00 01 00 OA to 00 0A 00 01
A B
*Note: Little-Endian byte order is applied for 4-bytes data.
A: Specify 10 times of Jumping (OXA = 10 in decimal)
B: Jump to #1 and perform a relative positioning again
CRC check

Command 5, current step #4: End of the motion sequence
01 06 040B 0064 F8 D3

o @ @ ®
(D Node address 0x1
2 MODBUS command “0x06”

(3 Communication Address 0x40B (= 1035 in decimal)
@ End of the data (0x64 = 100 in decimal)
® CRC check

Example 2. Check programming parameter
01 06 0143 000OE F8 26

o @ @ ®
(D Node address 0x1

@ MODBUS command “0x06”

(3 Communication Address 0x0143 (= 323 in decimal, communication command setting)
(@ Data: Check programming data (OXE =14 in decimal)

® CRC check

3. Save a programming parameter
*Note: Please check the data before saving it. If not, the data may not be saved properly.

23

01 06 0143 00 OF 39 E6

O © 6 @ ®
(D Node address 0x1

@ MODBUS command “0x06”
® Communication address 0x0143 (=323 in decimal, communication command setting)

@ Data: Save programming data (0xF =15 in decimal)
® CRC check

Protocol description
The MODBUS protocol defines a simple protocol data unit (PDU) independent of the underlying
communication layers. The mapping of MODBUS protocol on specific buses or network can
introduce some additional fields on the application data unit (ADU).

-t
ADU
- >
PDU

Figure 1. General MODBUS frame

The size of the MODBUS PDU is limited by the size constraint inherited from the first MODBUS
implementation on Serial Line network (max. RS485 ADU = 256 byrtes).

Therefore:

MODBUS PDU for serial line communication = 256 - Server address (1 byte) - CRC (2 bytes) = 253
bytes.

Consequently:

RS232 / RS485 ADU = 253 bytes + Server address (1 byte) + CRC (2 bytes) = 256 byrtes.

The MODBUS protocol defines three PDUs. They are:
e MODBUS Request PDU, mb_req_pdu
e MODBUS Response PDU, mb_rsp_pdu
* MODBUS Exception Response PDU, mb_excep_rsp_pdu

The mb_req_pdu is defined as:
mb_req_pdu = {function_code, request_data}, where
function_code = [1 byte] MODBUS function code,
request_data = [n bytes] This field is function code dependent and usually contains
information such as variable references, variable counts, data offsets, sub-function

24

codes etc.

The mb rsp pdu is defined as:
mb rsp_pdu = (function code, response_data), where
function code = [1 byte] MODBUS function code
response_data = [n bytes] This field is function code dependent and usually contains
information such as variable references, variable counts, data offsets, sub-function codes,

etc.

The mb excep rsp_pdu is defined as:
mb excep rsp_pdu = (exception-function code, request data), where
exception-function code = [1 byte] MODBUS function code + 0x80
exception code = [1 byte] MODBUS Exception Code Defined in table "MODBUS

Exception Codes” (see Section 12 below)

25

10 MODBUS Transaction

10.1 Define MODBUS Transaction

\
Wait fora MB
SACEon [Receive MB indication]
Validate function
code
ExeptionCode = 1 (invalid]
Validate data
Address
ExceptionCode = 2 [Invalid]
Validate data
ExceptionCode = 3 [Invalid]
Execute MB
l— ExceptionCode = 4, 5. 6 [Invalid]
alid)
Send Modbus
Ef::e p:)‘r.;:e Send Modbus
-y Response

Figure 2. MODBUSTransaction state diagram
Once the request has been processed by a server, a MODBUS response using the adequate
MODBUS server transaction is built. Depending on the result of the processing two types of
response are built:

* A positive MODBUS response:

The response function code = the request function code

e A MODBUS Exception response (see section 12):

26

The objective is to provide to the client relevant information concerning the error detected
during the processing;

The exception function code = the request function code + 0x80;

An exception code is provided to indicate the reason of the error.

10.2 MODBUS: General response

Client Server

Initiate request

\b Perform the action

Initiate the response

o] o |

Receive the response

Figure 3. MODBUS transaction (error free)

10.3 MODBUS: General exception response
Client Server

Initiate request

\

_______.—-l-

Error detected in the action
Initiate an error

Receive the response Exception Function code Exception code

Figure 4. MODBUS transaction (exception response)

27

11 Data Encoding

MODBUS uses a ‘big-Endian’ representation for addresses and data items.

12 Public Function Code Definition

Function codes

Code | Sub code | (hex)
Physical discrete
y) Read discrete inputs 02 02
inputs
Bit internal bit Read coils 01 01
nternal bits
access or Write single coil 05 05
Physical coils Write multiple coils 15 OF
Physical input
y . P Read input register 04 04
Data registers
Access Read holding registers 03 03
16 bits| Internal registers| Write single register 06 06
access or Write multiple registers 16 10
Physical output| Read/Write multiple registers | 23 17
registers Mask write register 22 16
. Read file record 20 6 14
File record access —
Write file record 21 6 15
Diagnostics Read device identification 43 14 2B

The frequently used function codes based on communication needs are highlighted in above

table.

03 (0x03): Read holding registers
06 (0x06): Write single register
16 (0x10): Write multiple registers

12. 1 03 (0x03): Read holding registers
This function code is used to read the contents of a contiguous block of holding registers in a

remote device. The Request PDU specifies the starting register address and the number of

registers. In the PDU Registers are addressed starting at zero. Therefore registers numbered
1-16 are addressed as 0-15.
The register data in the response message are packed as two bytes per register, with the binary
contents right justified within each byte. For each register, the first bye contains the high order
bits and the second contains the low order bits.

28

Request

Function code 1 byte 0x03

Starting address 2 bytes 0x0000 to OxFFFF

Quantity of registers 2 bytes 1 to 125 (0Ox7 D)
Response

Function code 1 byte 0x03

Byte count 1 byte 2XN*

Register value N*x 2 bytes

*N = Quantity of registers

Error
Error code 1 byte 0x03
Exception code 1 byte 01 or 02 or 03 or 04

Here is an example of a request to read registers 108 — 110:

Field name (Hex) Field name (Hex)
Function 03 Function 03
Starting Address Hi 00 Byte Count 06
Starting Address Lo 6B Register value Hi (108) 02
No. of Registers Hi 00 Register value Lo (108) 2B
No. of Registers Lo 03 Register value Hi (109) 00
Register value Lo (109) 00
Register value Hi (110) 00
Register value Lo (110) 64

The contents of register 108 are shown as the two byte values of 02 2B hex, or 555 decimal. The
contents of registers 109-110 are 00 00 and 00 64 hex, or 0 and 100 decimal, respectively.

29

Cavry
ENTRY

NO

v

v

MEB Server receives mbh_req_pdu

Function code
supporied

ExceptionCode = 01

¢ YES
NO

0x0001 = Quantity of Registers = 0x007D >

YES
ExceptionCode = 03

h 4

NO Starting Address == OK
AND
Starting Address + Quantity of Registers == QK

YES
ExceptionCode =02

‘ Request Processing

NO

v

ExceptionCode =04 i YES

ReadMultipleRegisters == OK >

MEB Server Sends mb_rsp

h 4 h 4

ME Server Sends mb_exception_rsp »

Figure 5. Read holding registers state diagram

30

12.2 06 (0x06): Write single register

This function code is used to write a single holding register in a remote device. The Request
PDU specifies the address of the register to be written. Registers are addressed starting at zero.
Therefore register numbered 1 is addressed as 0. The normal response is an echo of the
request, returned after the register contents have been written.

Request

Function code 1 byte 0X06

Register address 2 bytes 0x0000 to OXFFFF

Register value 2 bytes 0x0000 to OXFFFF
Response

Function code 1 byte 0x06

Register address 2 bytes 0x0000 to OxFFFF

Register value 2 bytes 0x0000 to OxFFFF
Error

Error code 1 byte 0x86

Exception code 1 byte 01 or 02 or 03 or 04

Here is an example of a request to write register 2 to 00 03 hex:

Field (Hex) | Field (Hex)
Function 06 Function 06
Register address Hi 00 Register address Hi 00
Register address Lo 01 Register address Lo 01
Register value Hi 00 Register value Hi 00
Register value Lo 03 Register value Lo 03

31

ENTRY

NO

|

MB Server receives mb_req_pdu

Function code
supported

ExceptionCode = 01

¢ YES
NO

0x0000 = Register Value =< OxFFFF >

ExceptionCode = 03

YES

h 4

NO
Register Address == OK >

YES

ExceptionCode =02

Request Processing

NO WriteSingleRegister == OK >

YES
ExceptionCode = 04

MB Server Sends mb_rsp

A 4 Y

MB Server Sends mb_exception_rsp >

Figure 6. Write single register state diagram

32

12.3 16 (0xI0): Write multiple registers
This function code is used to write a block of contiguous registers (1 to 120 registers) in a
remote device. The requested written values are specified in the request data field. Data is
packed as two bytes per register. The normal response returns the function code, starting
address, and quantity of registers written.

Request
Function code 1 byte 0x10
Starting address 2 bytes 0x0000 to OxFFFF
Quantity of registers 2 bytes 0x0001 to 0x0078
Byte count 1 byte 2 X N*
Registers value N*x 2 bytes value
*N = Quantity of registers
Response
Function code 1 byte 0x10
Starting address 2 bytes 0x0000 to OxFFFF
Quantity of registers 2 bytes 1 to 123 (0x07B)
Error
Error code 1 byte 0x10
Exception code 1 byte 01 or 02 or 03 or 04

Here is an example of a request to write two registers starting at 2 to 00 0A and 01 02 hex:

‘Request [Reponse

Field name (Hex) | Field name (Hex)
Function 10 Function 10
Starting address Hi 00 Starting address Hi 00
Starting address Lo 01 Starting address Lo 01
Quantity of registers Hi 00 Quantity of registers Hi 00
Quantity of registers Lo 02 Quantity of registers Lo 02
Byte count 04

Registers value Hi 00

Registers value Lo 0A

Registers value Hi 01

Registers value Lo 02

33

(5 l

MB Server receives mb_req_pdu

NO
Function code
supported
YES
ExceptionCode = 01
NO 0x0001 £ Quantity of Registers < 0x007B
AND

v

Byte Count == Quantity of Registers x 2

ExceptionCode =03

l YES

NO

Starting Address == OK
AND

Starting Address + Quantity of Registers == OK

ExceptionCode =02

¢ YES

Request Processing

NO ¢

WriteMultipleRegisters == OK >

ExceptionCode = 04 YES

h 4 A 4

MB Server Sends mb_rsp

MB Server Sends mb_exception_rsp

>

Figure 7. Write multiple

registers state diagram

A listing of exception codes begins on the next page.

34

MODBUS Exception codes

Code | Name Meaning

The function code received in the query is not an allowable action for
the server (or slave). This may be because the function code is only
ILLEGAL applicable to newer devices, and was not implemented in the unit
FUNCTION selected. It could also indicate that the server (or slave) is in the wrong
state to process a request of this type, for example because it is
unconfigured and is being asked to return register values.

01

The data address received in the query is not an allowable address for
the server (or slave). More specifically, the combination of reference
number and transfer length is invalid. For a controller with 100
ILLEGAL registers, if a request is submitted with a starting register address of 96
02 DATA and a quantity of registers of 4, then this request will successfully
ADDRESS operate (address-wise at least) on registers. If a request is submitted
with a starting register address of 96 and a quantity of registers of 5,
then this request will fail with Exception Code 0x02 “Illegal Data
Address”.

A value contained in the query data field is not an allowable value for
server (or slave). This indicates a fault in the structure of the remainder
of a complex request, such as that the implied length is incorrect. It

03 ::I)' AI_'II'EA(\B'\A/\,ID_\LUE specifically does NOT mean that a data item submitted for storage in a
register has a value outside the expectation of the application program,
since the MODBUS protocol is unaware of the significance of any
particular value of any particular register.

04 ?)IEC\I/CEE An unrecoverable error o?curred while the driver was attempting to

EAILURE perform the requested action.
Specialized use in conjunction with programming commands. The server
(or slave) has accepted the request and is processing it, but a long
05 ACKNOW- duration of time will be required to do so. This response is returned to
LEDGE prevent a timeout error from occurring in the client (or master). The
client (or master) can next issue a Poll Program Complete message to
determine if processing is completed.
SLAVE Specialized use in conjunction with programming commands. The
06 DEVICE server (or slave) |_s engaged in processing a Iong—_duratlon program
BUSY command. The client (or master) should retransmit the message later
when the server (or slave) is free.
Specialized use in conjunction with function codes 20 and 21 and
MEMORY reference type 6, to indicate that the extended file area failed to pass a
08 PARITY consistency check. The server (or slave) attempted to read record file,
ERROR but detected a parity error in the memory. The client (or master) can

retry the request, but service may be required on the server (or slave)
device.

35

GATEWAY Specialized use in conjunction with gateways indicates that the
on | PATH gateway was unable to allocate an internal communication path from
UNAVAILABLE the input port to the output port for processing the request. Usually
means that the gateway is misconfigured or overloaded.
GATEWAY - -
TARGET Specialized use in conjunction with gateways indicates that no
OB DEVICE EAILED ;espon§e was obtained f;om the taliget device. Usually means that the
TO RESPOND evice is not present on the network.
If the interval between the last byte and the next byte in the same
TRANSMISSIO frame sent is greater than 1.5 character times, an error will occur and
N TIME-OUT the current frame will be deleted. An error code is sent if no data is
0C BETWEEN received within 3.5 character times. For continuous data transmission,
BYTES an error code will be sent when there’s no data is received within 3.5
character times. In this case, the previously received data will be
discarded.
An error occurs once another message frame was transmitted within 3.5
THE INTER- character times after a successful reception of the previous message frame
oD FRAME DELAY | An error code returns when there was no data received after a 3.5
IS LESS THAN character times expired. For continuous data transmission, an error code
3.5T will be sent when there’s no data is received within 3.5 character times.
In this case, the previously received data will be discarded.

13 MODBUS master node protocol principle
The master node issues a MODBUS request to the slave nodes in two modes:
13. 1 In unicast mode, the master addresses an individual slave. After receiving and processing the

request, the slave returns a message (a 'reply’) to the master.

In that mode, a MODBUS transaction consists of 2 messages: a request from the master, and
a reply from the slave. Each slave must have a unique address (from 1 to 247) so that it can be
addressed independently from other nodes

13.2 In broadcast mode, the master can send a request to all slaves.

No response is returned to broadcast requests sent by the master. The broadcast requests are
necessarily writing commands. All devices must accept the broadcast for writing function. The
address 0 is reserved to identify a broadcast exchange.

14 MODBUS addressing rules
The Modbus addressing space comprises 256 different addresses.

0

1-47 48-255

Broadcast address

Slave individual addresses Reserved

36

The address 0 is reserved as the broadcast address. All slave nodes must recognize the broadcast
address. The Modbus master node has no specific address, only the slave nodes must have an address.
This address must be unique on a Modbus serial bus.

Note: Communication address = Value of DIP switches +1 (The address of the driver cannot be 0)

15 Master / Slave communication time diagram

Reply analysis and

< Tu und dela: R nse ti ut
A : preparation of the R T
following exchange 4—'} —>
| 4 : :
| Wait |
|
Master REQUEST BROADCAST
1]
: to slave 1 l : 1 H i
1)]
! ' ' leror | l
l l ' 1 1
1 | | \ ! !
Slave 1 I { ! H H i
{ | ! ! : :
2 I ftreatment | | | H 1 i
f/ : | E E } : i Y Error detection |
| : ! | | '
Slave N { ! ! ; : v
| | H
: i E l Simultaneous execution lof i
| : : | the order by the sIave% ! , -
I ' : ' | E i
Physical ‘ ! !
line H :
i | | | |
| l)]
i : | ! !
: T |] |)
- } ! ! Time

}(— Exchange i-1){(Exchange i _)5(_ Exchange i+1 ———
| |

Figure 8. Master / Slave scenario time diagram

16 RTU transmission mode
The format for each byte (11 bits) in RT'U mode is:
Coding System: 8-bit binary. Each 8-bit byte in a message contains two 4-bit hexadecimal
characters. (0=9 > A—F)

Bits per byte: 1 start bit
8 data bits, least significant bit sent first
1 bit for parity completion
1 stop bit

37

Modbus message RTU f{raming

A MODBUS message is placed by the transmitting device into a frame that has a known
beginning and ending point. This allows devices that receive a new frame to begin at the start of the
message, and to know when the message is completed. Partial messages must be detected and errors
must be set as a result. In RTU mode, message frames are separated by a silent interval of at least 3.5
character times. In the following sections, this time interval is called ¢3,5.

Frame 1 Frame 2 Frame 3
A A
1o -~ ~ s =~ Ve
ESPRPSRS R Y E R Y A E L 1 ER
| I] I‘—’J 1
— — | 35char ' |
at least 3.5 char at least 3.5 char —
4.5 char
P MODBUS message _
Start Address | Function Data End
> 3.5 char 8 bits 8 bits N x 8 bits 16 bits > 3.5 char

Figure 9. RTU message frame

The entire message frame must be transmitted as a continuous stream of characters. If a silent
interval of more than 1.5 character times occurs between two characters, the message frame is

declared incomplete and should be discarded by the receiver.

Baud rate Interval of message 5P ace;ylz::ween Response time-out| Transition delay
>=19200 bps >=2ms <=0.8ms Ls 200ms
14400 bps >=2.7ms <=1.1ms Ls 200ms
9600 bps >=4ms <=1.7ms Ls 200ms
4800 bps >=8ms <=3.4ms Ls 200ms
2400 bps >=16ms <=6.8ms Is 200ms

38

17 CRC checking

The CRC field contains a 16-bit value implemented as two 8-bit bytes. The CRC field is appended
to the message as the last field in the message. When this is done, the low-order byte of the field is
appended first, followed by the high-order byte. The CRC high-order byte is the last byte to be sent

in the message.

OxFFFF — CRC16

>

Y
CRG16 XOR BYTE — CRG16

'

N=0

3

Move io tha right CRC1E

o

Carry over

A “ 4>—l

CRC16 XOR POLY — CRC 16

Yes

- + -t |
M=HN+1
Mo Ni > Yes
=
.| -
o End of Yas
nd aof message
. I
Following BYTE

EMND

Figure 10. Calculation algorithm of the CRC 16

XOR = Exclusive or
N = Number of information bits

POLY = Calculation polynomial of the CRC 16 = 1010 0000 0000 0001
(Generating polynomial = 1 + x, + x5 + x¢)
In the CRC 16, the 1* byte transmitted is the least significant one.

39

The function takes two arguments:

unsigned char *puchMsg; A pointer to the message buffer containing binary data to be used for
generating the CRC,

unsigned short usDatalen; The quantity of bytes in the message buffer.

CRC Generation Function
unsigned short CRC16 (puchMsg, usDatalen) /* will be returned to CRC with unsigned short */

unsigned char *puchMsg ; /* message to calculate CRC upon */
unsigned short usDatalLen ; [* quantity of bytes in message */

unsigned char uchCRCHi = OxFF ; /* high byte of CRC initialized */
unsigned char uchCHRLo = OxFF ; /* low byte of CRC initialized */
unsigned ulndex ; /* will index into CRC lookup table */
while (usDatalen--) /* pass through message buffer */

ulndex = uchCRCLo " *puchMsgg+ +; /* calculate CRC */
uchCRCLo = uchCRCHi ” auchCRCHi[ulndex);
uchCRCHi = auchCRCLo[ulndex] ;

return (uchCRCHi << 8 | uchCRCLO0) ;

40

High-Order Byte Table
/* Table of CRC values for high-order byte */

static unsigned char auchCRCHI[] = (

0x00, OxC1, 0x81, 0x40, 0x01, 0xCO0, 0x80, 0x41, 0x01, 0xCO, 0x80, 0x41, 0x00, OxC1, 0x81,
0x40, 0x01, 0xCO, 0x80, 0x41, 0x00, OxC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xCO,
0x80, 0x41, 0x01, 0xCO, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xCO0, 0x80, 0x41, 0x00, OxC1, 0x81, 0x40, 0x01, 0xCO0, 0x80, 0x41, 0x01, O0xCO, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xCO, 0x80, 0x41, 0x00, OxC1, 0x81, 0x40, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xCO0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, OxCO, 0x80, 0x41, 0x01, 0xCO,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, OxCO0, 0x80, 0x41, 0x01,
0xCO0, 0x80, 0x41, 0x00, OxC1, 0x81, 0x40, 0x01, 0xCO0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xCO, 0x80, 0x41, 0x01, OxCO, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xCO0, 0x80, 0x41, 0x00, OxC1, 0x81, 0x40, 0x01, 0xCO,
0x80, 0x41, 0x01, 0xCO0, 0x80, 0x41, 0 x00, OxC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xCO0, 0x80, 0x41, 0x01, OxCO0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xCO, 0x80, 0x41,
0x00, OxC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, OxCO, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xCO0, 0x80, 0x41, 0x01, 0xCO0, 0x80, 0x41, 0x00, OxC1, 0x81, 0x40, 0x01, 0xCO,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, OxC1, 0x81, 0x40, 0x01, OxCO, 0x80, 0x41, 0x01,
0xCO0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, OxC1, 0x81, 0x40, 0x01, 0xCO, 0x80, 0x41,
0x00, OxC1, 0x81, 0x40, 0x01, 0xCO0, 0x80, 0x41, 0x01, 0xCO, 0x80, 0x41, 0x00, OxC1, 0x81,
0x40

Low-Order Byte Table

/* Table of CRC values for low-order byte */

static char auchCRCLO[] = (

0x00, 0xCO0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5,
0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, Ox0E, 0x0A, OxCA, 0xCB, 0x0B,
0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE,
0xDF, Ox1F, 0xDD, 0x1 D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6,
0xD2, 0x12, 0x13, 0xD3, 0x11, 0xD1, 0xDO0, 0x10, 0xFO0, 0x30, 0x31, 0xF1, 0x33, OxF3
0xF2, 0x32, 0x36, 0xF6, OxF7, 0x37, OxF5, 0x35, 0x34, 0xF4, 0x3C, OXFC, 0xFD, 0x3D,
OxFF, 0x3F, Ox3E, OxFE, OXFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, OXE8, 0xE9,
0x29, OXEB, 0x2B, 0x2A, OXEA, OxEE, 0x2E, 0x2F, OXEF, 0x2D, OXED, OXEC, 0x2C, OxE4,

0x24, 0x25, OXE5, 0x27, OXE7, OXE6, 0x26, 0x22, OXE2, OXE3, 0x23, OXE1, 0x21, 0x20, OXEOQ,
0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, OxA7, 0x67, OxA5, 065, 0x64,
0xA4, 0x6C, OXAC, 0xAD, 0x6D, 0xAF, Ox6F, 0x6E, OXAE, OXAA, 0X6A, 0x6B, 0XAB, 0x69,
0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, OXBA, 0XxBE, OX7E, 0X7F,
0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5, 0x77, 0xB7, 0xB6, 0x76, 0x72,
0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92,
0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, OX9E,
Ox5E, Ox5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B,
Ox8A, 0x4A, Ox4E, Ox8E, 0x8F, 0x4F, 0x8 D, 0x4D, 0x4C, 0x8C, 0x44, 0x84, 0x85, 0x45,

41

0x87, 0x47, 0x46, 0x86 , 0x82, 0x42, 0x43, 0x83, Ox41, 0x81, 0x80, 0x40
b

18 Two-Wire MODBUS Definition

A MODBUS solution over serial line should implement a “Two-Wire” electrical interface in
accordance with EIA/TTA-485 standard.

5V

Pull Up

D1

@r Balanced Pair M ET
DO
+ Pull Down
Common

s

Figure 11. General 2-Wire Topology

Appendix. Wiring Diagram Example of MITSUBISHI FX3U Series

L
PULSE Control O = E@
FX3U 24V | oV L CM20
fuse Motor
<— U —T—: L
1 FG
S 1 < E@ =1 GND
< T e N
24V)Y I N CN1
S/S
[
ov
24V
CN2
~ -COM
}tllz: i In Position
- : - X0 ouT1 -; ;]
i No Alarm I8
DIl X1 SERS N O 1
I L JoG+ L
X2 |
[
I L JOG- :
X3 O O |
I —— Home Switch
X4 0 O |
I +COM
— | +CoM |-
I = L
Servo ON/OFF
L@ Y6 vo ON/ INL | -—Hi(—
| "L tadt
Clear Alarm
Y7 INL -—!—*1{_
L@ DIR
Y4
|
COM1 — Pulse+
L@ I PULSE
YO

L
I/0 Control T T E@
— N |_|
FX3U 24V | oV L CcM20
Motor
fuse
- — L
<\~ e T FG
T = E@ — GND
<— T - 3 N s
24V oV | - CN1
S/S
[}
ov
24V N2
[—com
yevila In Positi
_)4—1!1; E : %0 n Position &JB _ t{_
| [No Al T
Detlli] o o) e
[+com H
Home Switch 2448
coM2 e = 1 | ._H (_
I Clear Alarm ::I:: A 3 B
< v (e =]
Decelerated Stop X 3
Vs T a3
Start Program X 3
s prgaimic
Bit0 12340
L@ 7 s =L

